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• Demonstrated by Thagard in late 70’s
– electrically heated, porous wall reactor 

• Simple in concept
– essentially single step to end products

• Extremely high reaction rates at 1600-2000oC
• Various end-product configurations possible
• Co-products both have economic value 
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• Near term

– Current status:
• 70-95% CH4 conversion to H2 @ 1850oC
• $0 -12/kg depending on process configuration and 

co-product value
– Targets:

• 70% conversion on a continuous basis
• $3/kg for fleet fueling station with carbon black at 

tire market price
• Long-term

– < $2/kg for water-splitting cycles
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Historical PerspectiveHistorical Perspective
• Initiation of Project: FY2000

– University of Colorado awarded competitive DOE GO 
subcontract

• Significant Results:
– FY00: demonstrated proof-of-concept at HFSF
– FY01: achieved 80% conversion in new reactor
– FY02: demonstrated fluid-wall (aerosol) reactor
– FY03: achieved 94% conversion

• Limited funding to complete Ph.D. thesis experimental work
– Overall: 

• very high reaction rates demonstrated
• no technical showstoppers
• near-term commercialization opportunities
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• High concentrations possible (>1000 W/cm2)
– high temperatures easily achieved (>3000 oC)
– reduced reactor size; low thermal mass

• Rapid heating rates (>>1000 oC/s)
– quick start/stop operation

• Abundant resource (both US and worldwide)
– Sufficient to power the world (if we choose to)

• Advantages tradeoff against collection area
– this is true for all technologies using sunlight
– heliostat costs are significant fraction of capital

• importance depends on overall process efficiency
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Vision for Solar Thermal ProcessingVision for Solar Thermal Processing
• Apply advantages to a clean hydrogen economy 

producing hydrogen from water
• Near-term (0-5 years): Methane as transition fuel

– Identify/develop promising processes
• e.g. NG dissociation, dry reforming

– Develop aerosol flow reactor and process understanding
• technical and economic

– Introduce solar technology on small scale in appropriate 
markets/locations (SW United States) 
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• Longer-term (3-15 years): Move to water as the fuel

– Initially through thermochemical cycles
• e.g. 2-step metal oxide reduction, others as identified

– Eventually to direct, high-temperature splitting/separation
• significant materials separation issues need to be overcome

– If renewable electric power is ever cheap enough: electrolyzers
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• Bulk Hydrogen

– large-scale systems, pipeline feeds
• Distributed Fleets

– fueling stations
– HCNG a near-term possibility

• Industrial User/Supplier
– Semiconductor industry

• Syngas
– add reformer to system

• Utility plants
– power and hydrogen

• Carbon black plant
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Conversion as a Function of Reactor Wall Temperature
for Various Initial Methane Flow Rates
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• Team took exception to the use of a carbon fuel 

cell to extend hydrogen production into dark 
hours
– Response: the carbon fuel cell is a long-term 

technology that was considered as an option for use of 
the carbon byproduct and is not essential to the overall 
concept technically or economically.  

• “…inclusion…in the hydrogen program portfolio is 
important in that it keeps the technology area 
broad, maximizes options for commercial use, 
and complements other dissociation 
technologies.”
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• First Fueling Station:  Phoenix Area
– Pinnacle West is already in business

• HCNG, NG, H2; H2 by electrolysis w/off-line e-
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Bus Lines, …

• Combined Fleet Facility with Industrial H2 users
– Intel & Motorola are heavy users
– Tucson, Albuquerque, Las Vegas, Denver, 

Colorado Springs, Salt Lake City, …

• Potential scale-up scenario
– H2 Enriched NG (HCNG) (20 – 35% H2) for Fleets
– Increased H2 Content HCNG (50% or more)
– Fuel Cell Vehicles (100% H2) or IC engines running on H2

• Carbon Conversion Fuel Cell Marketed
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Enhanced oil recovery, early 80’s Large solar furnace, France

30 MWth Solar Plant, CASmall central receiver, Israel
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• Industrial H2 to Semi-conductor Plants in SW, etc.
• Co-generating Utilities

– H2 and electricity
• Coal Bed Methane Conversion

– largest reserves in the world are in the Four Corners 
Region of the desert SW United States)

• Biogas Conversion
– waste landfill biogas, etc.
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• 2  Step metal oxide reduction

– high temperature endothermic reduction
– lower temperature exothermic reaction with water
– Ongoing European solar projects

• Thermochemical cycles
– originally studied with nuclear reactors in mind
– recent General Atomics study identified 2 candidates

• adiabatic UT-3
• Sulfur – iodine

– GA proposing to identify others with higher 
temperature operation using solar thermal power

• Direct water splitting
– requires T>2500oC, high temperature separation
– ∆H2500oC = 238 kJ/mole
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• Splitting methane using concentrated sunlight is 

technically feasible
• Various system configurations and applications 

have economic potential
• Technical concept can be extrapolated to other 

chemical reactions and to water splitting
• A near-term  application, business opportunity and 

path forward have been identified
• Continued funding is warranted
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